04[3,3,3,3,3]

外接球半径 2

04[3,3,3,3,3] 07[3,3,3,3,4] 13[3,3,3,3,5] Excel 多面体 諸量

かなり オタクな 計算遊びのつづきです。

前回 [ 3,3,3,3,5 ] の 外接球半径の計算式を Wolfram Alpha 計算知能で 求めました。
今回 その入力の値を (PI/2-PI/5) から (PI/2-PI/4) に変え
[ 3,3,3,3,4 ] の 値として

(ASIN(1/2/(1-0.5^2/X^2)^(1/2)))*8+(ASIN(SIN((PI/2-PI/4))*2/2/(1-0.5^2/X^2)^(1/2)))*2=2*PI
と 入力し Wolfram Alpha → 
計算式が表示されました。

Excel や Wolfram の入力用に 変換した式は以下です。

1/(4*SQRT(6/(80+(101888-1536*SQRT(33))^(1/3)+8*(199+3*SQRT(33))^(1/3))))
Wolfram Alpha →


私が 以前ご報告した 計算式は
SQRT(-(21/(2*(-22+(566-42*SQRT(33))^(1/3)+(566+42*SQRT(33))^(1/3))))) でした。

同様に [ 3,3,3,3,3 ] の 値として
その入力の値を (PI/2-PI/4) から (PI/2-PI/3) に変えるとか

すべて 三角形なので
ASIN(1/2/(1-0.5^2/X^2)^(1/2)))*2*5=2*PI にすると

1/2*SQRT(5/2+SQRT(5)/2) が返えってきました。
以前報告の 計算式は
1/2*SQRT(1/2*(5+SQRT(5))) でした。

三種類それぞれ 計算式は異なっていても 計算数値は全てどれもイコールでした。

もう オタクな計算遊びは やめにして
次回のブログは ダイヤモンド結晶模型について載せようかと思っています。

正多面体 Platonic solid 2

01[3,3,3] 02[3,3,3,3] 03[4,4,4] 04[3,3,3,3,3] 09[5,5,5] Compounds 多面体 諸量

2×10 の板棒で作った 正多面体です。
画像手前の多面体は これからお伝えしようとしている 立体です。
左から 01[ 3,3,3 ] , 02[ 3,3,3,3 ] , 03[ 4,4,4 ] です。
後方左は 09[5,5,5] そして 04[3,3,3,3,3]。

PIC_1670

諸量を表示しておきます (稜寸は 1 として)。

     面積     体積     基本数   頂芯寸   稜芯寸   面芯寸   仰角   片接合角   二面角
01  1.73205  .117851  .577350  .612372  .353553  .204124  54.7356  60.0000  70.5288
02  3.46410  .471405  .707107  .707107  .500000  .408248  45.0000  45.0000  109.471
03  6.00000  1.00000  .816497  .866025  .707107  .500000  35.2644  60.0000  90.0000
04  8.66025  2.18169  .850651  .951057  .809017  .755761  31.7175  36.0000  138.190
09  20.6457  7.66312  .934172  1.40126  1.30902  1.11352  20.9052  60.0000  116.565


作り方については 現在 資料作成中です。

画像下側左右は複合多面体です。
PIC_1687

複合多面体 [5,5,5]+[3,3,3,3,3] 再掲2

04[3,3,3,3,3] 09[5,5,5] Compounds 多面体 製作道具

複合多面体 [5,5,5]+[3,3,3,3,3] の 前回作品の改良版です。
画像下右が それで 接合部分に空洞がないのが お判りでしょうか。
寸法の補正はせず 30mm と 49mm の部材で作っています。

二種類の 台形状の部材の作り方は同じで 加工作業を一つ追加しました。
その作業に必要な 治具が 下の二つです。
稜線の集合している 多面体の頂の部分に 部材が届くように
接合部分を尖らせる加工を 施すものです。

このブログで お伝えしている
角材でつくる多面体の クレィドル cradle と言っている治具と同じ機能です。

下左は 稜部品が 5本 均等に一点に集まるように 360/5 となる 36 × 2 の 角度に整形します。
36° の角度に加工した6mm 厚のファルカタ材 二つで作っています。

加工部分を 垂直にするために 仰角の 31.72° と同じ傾斜角度になっています。
部材と同じ 2mm 厚の 板棒で 傾きと添え板をつくっています。

もう一つの治具は 同じように 360/3 となる 60 × 2 の 角度の 開き角と
20.91° の仰角になっています。

PIC_1647

複合多面体 [5,5,5]+[3,3,3,3,3] 再掲

04[3,3,3,3,3] 09[5,5,5] Compounds 多面体 製作道具 諸量

今回は [5,5,5] と [3,3,3,3,3] を複合させた立体についてお伝えします。
この複合多面体 は バルサ材の棒での製作説明でも 既にお伝えしています。

下画像 右上が それです。
大きさは その左側の二つと比べると 少し大きめです。

[5,5,5] に対応する 稜の寸法は 約 30mm で
前回まで説明している [5,5,5] と同じ寸法ですが
稜芯寸 × 2 が高さになるため 少し大きくなっています。

本来 多角形の組み合わせでてきる多面体の 面と面の接する部分(稜線) は線ですが
ここでは 幅のある線を用いるため
線と線とが 交わる点(頂) は仮想空間上に存在します。
一点に集まる 稜線の幅を 一辺とする 多角錐の頂点ともみなせます。

そのため 幅のある線の端から 頂までの距離は 多面体の形状によって異なります。
複合多面体模型の 幅のある稜線を作る部材の寸法には 補正が必要ということです。

補正する前の 計算としては
[5,5,5] の稜寸 30mm に対し [3,3,3,3,3] のは 約 49mm です。

補正の計算では
[5,5,5] の 30mm を 稜線の厚み分の 丁度 2mm をたした 32mm と
[3,3,3,3,3] は 約 49mm のそのままとなりました。

しかし 実際に製作してみると 30mm と 48mm の 値でうまくいったようです。
下画像がそれです。

全体の寸法のわりに 稜の幅が大きく 接着剤の厚みや 部材の加工誤差 等々
理由は 補正値の計算間違えの可能性も含めて 色々と考えられます。

PIC_1641

部材の加工について説明します。

[5,5,5] の部材は 30mm から 板棒の厚み 2mm を引いた 28mm の半分にし
片側が 約69.1 度 もう一方が直角の 台形に整形し60個つくります。

[3,3,3,3,3] は 48mm の 左右約 58.3 度の角度をもつ 台形にし 30個。

二種類の部材を 十字状の ユニットに木工用ボンドで 30 組作り
合成ゴム系ボンドで 組み立てれば 完成です。

上画像の 四角い板でできた治具を台にして 十字状に加工します。
既に作った 十字状ユニットを 板に貼ってあるだけです。

長い部材を 短い二つの材で挟むように 台の上で合わせます。
しばらくすると 長いほうの部材を持って 上にあげても
形を維持しながら もちあがります。

慣れてくれば スムーズな作業ができます。
十字状ユニットをまとめて 電子レンジで 乾燥させ
(安全に対しては それぞれの方の 責任にてお願いします)
あとは 合成ゴム系ボンドで 接着すれば 意外と早く完成します。


以前は 製作説明を 10 × 10 のバルサ材の棒で 主にしていたので
作品の数が増えて 収納に困難をきたしました。

そのため バルサ材の棒で作った作品は フリーマーケットに出店し処分しました。
[5,5,5]+[3,3,3,3,3] の多面体も 含めてです。

後で少し後悔です。プロトタイプの 一点ものでした。

[3,3,3,3,3] Platonic solid 再掲

04[3,3,3,3,3] ポーカーの確率 多面体 製作道具

[3,3,3,3,3] 正二十面体 Icosahedron の 板棒での製作についてお伝えします。
前回までの [5,5,5] の説明を 理解されているものとして 説明します。

[5,5,5] と同じ大きさにしようとしています。
[5,5,5] の稜寸 は 30mm でしたので
面芯寸 1.11 × 30 × 2 で 高さは 約 67mm てした。

[3,3,3,3,3] の 面芯寸は 稜寸 1 に対して 約 0.756 なので
[3,3,3,3,3] の稜寸 は 67 / 2 / 0.756 で 約 44mm となります。

治具の加工角度は 90 – 31.72 で 約 58.28 度です。
直角を挟む二辺の 比としては 233/144 もしくは 288/178 が近似値です。
下画像 中ほどが その治具と 完成品です。

部材と部材の接合部分は 正五角形の筒状の空洞ができるようにします。
あとは正三角形に正三角形を次々と付けてゆくだけです。

三十枚の部材全部の両端に 合成ゴム系接着剤を塗布し
最初に塗った部材から 順次接着してゆけば あっけなく完成です。

PIC_1628

画像右に電卓が二つ写っています。
上が Casio FX-915 で 三十年ほど前に買ったものです。
ソーラーバッテリーを電源とし 今も正常ですが
薄型のため 入力操作に 円滑さは不足しています。
ポーガーの確率計算で 組み合わせの数 52 C の 5 で
2598960 の 値が 簡単に 出てきたのに感激したのを覚えています。

下は 現在活用している Canon F-502G です。
今 最もリーズナブルに 購入できる 関数電卓の一つです。

多面体諸量 個別表示 04[3,3,3,3,3] 09[5,5,5] Platonic solid

04[3,3,3,3,3] 09[5,5,5] Compounds 多面体

04[3,3,3,3,3] Icosahedron 正20面体
09[5,5,5] Dodecahedron 正12面体 とその複合多面体 compounds の諸量をお伝えします。

04 [3,3,3,3,3] Icosahedron 正20面体
04 1.0000000000000000000 [3,3,3,3,3]稜寸
04 .85065080835203993218 [3,3,3,3,3]基本数
04 31.717474411461005324 [3,3,3,3,3]仰角( 144/233 )
04 .95105651629515357212 [3,3,3,3,3]頂芯寸( 136/143 )
04 .80901699437494742410 [3,3,3,3,3]稜芯寸( 144/178 )
04 36.000000000000000000 [3,3,3,3,3]片接合角( 178/245 )
04 .75576131407617073048 [3,3,3,3,3]面芯寸( 164/217 )
04 8.6602540378443864676 [3,3,3,3,3]面積
04 2.1816949906249123735 [3,3,3,3,3]体積
04 69.094842552110700967 [3,3,3,3,3]片面角( 233/089 )
04 138.18968510422140193 [3,3,3,3,3]ニ面角
04 [3,3,3,3,3] 稜部品 必要個数 30

09 [5,5,5] Dodecahedron 正12面体
09 1.0000000000000000000 [5,5,5]稜寸
09 .93417235896271569645 [5,5,5]基本数
09 20.905157447889299033 [5,5,5]仰角( 089/233 )
09 1.4012585384440735447 [5,5,5]頂芯寸( 220/157 )
09 1.3090169943749474241 [5,5,5]稜芯寸( 233/178 )
09 60.000000000000000000 [5,5,5]片接合角( 194/112 )
09 1.1135163644116067352 [5,5,5]面芯寸( 157/141 )
09 20.645728807067603073 [5,5,5]面積
09 7.6631189606246319687 [5,5,5]体積
09 58.282525588538994676 [5,5,5]片面角( 233/144 )
09 116.56505117707798935 [5,5,5]ニ面角
09 [5,5,5] 稜部品 必要個数 30

[3,3,3,3,3]+[5,5,5] compounds 複合多面体制作に必要な諸量
.61803398874989484820 [3,3,3,3,3] 0.5稜寸/稜芯寸( 144/233 )
.38196601125010515180 [5,5,5] 0.5稜寸/稜芯寸( 089/233 )
[3,3,3,3,3] 稜部品 必要個数 60
[5,5,5] 稜部品 必要個数 60

複合多面体 [5,5,5]+[3,3,3,3,3]

04[3,3,3,3,3] 09[5,5,5] Compounds 多面体 組物 製作道具



正十二面体と正二十面体との複合多面体 compounds 製作の
基本図面と その部品です。

二つの多面体を複合するには
稜から中芯点までの寸法が同じであることが必要です。
今回寸法を統一して 高さを 140mm とします。



部品の結合作業中です。



完成です この複合多面体は私にとって プロトタイプです。
すす竹では 作ろうという元気が起こりませんでした。



次回は 四つの三角リングでつくる シィメトリーな組み物を お伝えします。
準正多面体 の立法八面体とは兄弟関係にあります。
この組み物はよく目にするのですが どう呼ばれているのか知りません。

正二十面体 [3,3,3,3,3] Icosahedron

04[3,3,3,3,3] 09[5,5,5] 多面体 製作道具



正二十面体製作の基本図面と クレィドルです。

対辺 178 底辺 245 の斜線を 上下対称に二本引きます。
両サイド 36度の接合面をつくるクレィドルを この角度に合せ作成します。

対辺 144 底辺 233 を示す斜線を引きます。
1 対 1.618 の比率を表し 稜寸 1 に対し 稜線から 多面体の中芯点までの寸法の二倍を表示。
そして底辺と斜辺でできる角度は クレィドルの傾き(仰角) 31.717度になります。

もう一本斜線を引きます。
対辺 131 底辺 198 で 1 対 1.512 の比率を表し 稜寸 1 に対し 面芯寸の二倍を示します。
今回も 他の多面体と寸法を合わせるため 高さ 140mm と決定すると
その稜寸が 底辺 140のところの 対辺の実寸として得られます (92.6)。



左のクレィドルで 仰角の余角 58.283 で角材を 寸法をあわせカットし そして整形。

右のクレィドルは 傾き 31.717度の V型溝に 58.283度に面をカットした角材をのせ
面を垂直にして接合面が左右 36度になるように整形します。
この部品を ひたすら 30個と少しの予備として作ってゆきます。

今回画面に載せているのこぎりが 以前のと違っていますが どれも細密加工用ののこぎりです。



完成しました これで正多面体の全種類ができました。

正十二面体 [5,5,5] Dodecahedron

04[3,3,3,3,3] 09[5,5,5] 多面体 製作道具



正十二面体を製作するための 基本図面です。
底辺 194 対辺 112 の斜線を 左右対称に 二本書き 接合角左右60度 のクレィドル用と
底辺 233 対辺 089 の比を表す斜線を引きます。
これは 正十二面体の稜寸を 1 としたとき 稜から芯のまでの 二倍の寸法をあらわし
それと 斜辺と底辺とでできる角度が クレィドルの仰角になっています。

この斜線のうえの斜線は 稜寸を 1 としたとき 五角形の面を底にしたときの
多面体の高さを表示する 比例関係の斜線です ( 1 対 2.227)。
今回 140mmの高さの多面体をつくろうとしていますが
底辺 140としたときの 対辺が実寸(62.9)の 稜の寸法になります。



製作途中です。



完成です (稜寸 62.9mm 高さ140mm)。

正十二面体 正二十面体 [5,5,5],[3,3,3,3,3]

04[3,3,3,3,3] 09[5,5,5] 多面体



正十二面体と正二十面体で 5×5のすす竹 高さは 7cm です。
レオナルドスタイルの工作を始めたきっかけになった 多面体です。
これらも プロトタイプで 1点ものです。
これから 10×10のバルサ材で製作方法をお伝えしてゆきたいと思っています。