sashimono[4,4,5] Archimedean solid
下画像の 手前右が[4,4,5]正五角柱で 左がその双対です。
正多角柱 uniform prisms とその双対の 一般解を求める BASIC プログラムです。
OPTION ANGLE DEGREES ! [ 4,4,n] Archimedean solid LET b001=5 ! 5 角数を指定 今は 5 LET b002=360/b001 ! 72 360/角数 LET b003=.5/SIN(b002/2) ! .85065080835204 外接円柱半径 LET b004=.5/TAN(b002/2) ! .688190960235587 四角面芯寸 LET b005=SQR((SQR(2)/2)^2+b004^2) ! .986715155325983 外接球半径 LET b006=SQR(b005^2-.5^2) ! .85065080835204 稜芯寸 LET b007=ASIN(.5/b005) ! 30.4463843170652 仰角 LET b008=COS(b007) ! .862103722396976 角錐底かど・心 LET b009=ASIN(SQR(2)/2/b008) ! 55.1059009029448 4角接合角 LET b010=(360-b009*2*2)/2 ! 69.7881981941104 5角接合角 LET b011=ASIN(b004/b003) ! 54 4面角 5双仰角 LET b012=ACOS(b004/b003) ! 36 5面角 4双仰角 LET b013=.5/COS(b012) ! .618033988749895 双4稜寸 LET b014=b004/COS(b011) ! 1.17082039324994 双5稜寸 LET b015=b013*2 ! 1.23606797749979 双4,4稜寸 LET b016=b013+b014 ! 1.78885438199984 双4,5稜寸 LET b017=360/4/2 ! 45 双4接合角/2 LET b018=360/b001/2 ! 36 双5接合角/2 LET b019=b006/COS(b012) ! 1.05146222423827 4 頂芯寸 LET b020=b006/COS(b011) ! 1.44721359549996 5 頂芯寸 PRINT "正";b001;"角柱" PRINT "稜寸 = ", 1 PRINT "外接円柱半径 = ", b003 PRINT "頂芯寸 = ", b005 PRINT "稜芯寸 = ", b006 PRINT "仰角 =",b007 PRINT "片面 4 角形接合角 =",b009 PRINT "片面";b001;"角形接合角 =",b010 PRINT " " PRINT "正";b001;"角柱双対" PRINT " 4 稜寸 = ",b013 PRINT b001;"稜寸 = ",b014 PRINT " S 稜寸 = ",b015 PRINT " L 稜寸 = ",b016 PRINT " S / L ",b015/b016 PRINT " 4 角接合角/2 =", b017 PRINT b001;"角接合角/2 =", b018 PRINT " 4 角仰角 = ", b012 PRINT b001;"角仰角 = ", b011 PRINT " 4 頂芯寸 = ", b019 PRINT b001;"頂芯寸 = ",b020 END ! プログラム終わり 計算数値の整数比 30.446 = 077/131 55.106 = 195/136 69.788 = 201/074 .69098 = 161/233 = S / L 45.000 = 180/180 36.000 = 178/245 54.000 = 245/178
2013年7月30日