sphericity 多面体 諸量
シリーズで 諸量の計算について お伝えしてきました。
その 計算結果の値や内容の信頼性を高めるために Wikipedia や
Wolfram Alpha そして MathWorld を参考にすることがあります。
ただ 検索に必要な 名称がつかみにくく 手間取ることが多くあります。
以下に 検索できる 名称と webpage をリンクさせた 一覧表を載せておきます。
日本語版のWikipedia
|
|
多面体 |
双対多面体 |
01 |
[3,3,3] |
正4面体 |
正4面体 |
02 |
[3,3,3,3] |
正8面体 |
正6面体 |
03 |
[4,4,4] |
正6面体 |
正8面体 |
04 |
[3,3,3,3,3] |
正20面体 |
正12面体 |
05 |
[3,4,3,4] |
立方8面体 |
菱形12面体 |
06 |
[3,6,6] |
切頂4面体 |
3方4面体 |
07 |
[3,3,3,3,4] |
変形立方体 |
5角24面体 |
08 |
[3,4,4,4] |
斜方立方8面体 |
凧形24面体 |
09 |
[5,5,5] |
正12面体 |
正20面体 |
10 |
[4,6,6] |
切頂8面体 |
4方6面体 |
11 |
[3,5,3,5] |
20・12面体 |
菱形30面体 |
12 |
[3,8,8] |
切頂6面体 |
3方8面体 |
13 |
[3,3,3,3,5] |
変形12面体 |
5角60面体 |
14 |
[3,4,5,4] |
斜方20・12面体 |
凧形60面体 |
15 |
[4,6,8] |
斜方切頂立方8面体 |
6方8面体 |
16 |
[5,6,6] |
切頂20面体 |
5方12面体 |
17 |
[3,10,10] |
切頂12面体 |
3方20面体 |
18 |
[4,6,10] |
斜方切頂20・12面体 |
6方20面体 |
英語版のWikipedia
|
|
polyhedron |
dual polyhedron |
01 |
[3,3,3] |
Tetrahedron |
Tetrahedron |
02 |
[3,3,3,3] |
Octahedron |
Cube |
03 |
[4,4,4] |
Cube |
Octahedron |
04 |
[3,3,3,3,3] |
Icosahedron |
Dodecahedron |
05 |
[3,4,3,4] |
Cuboctahedron |
Rhombic dodecahedron |
06 |
[3,6,6] |
Truncated tetrahedron |
Triakis tetrahedron |
07 |
[3,3,3,3,4] |
Snub cube |
Pentagonal icositetrahedron |
08 |
[3,4,4,4] |
Rhombicuboctahedron |
Deltoidal icositetrahedron |
09 |
[5,5,5] |
Dodecahedron |
Icosahedron |
10 |
[4,6,6] |
Truncated octahedron |
Tetrakis hexahedron |
11 |
[3,5,3,5] |
Icosidodecahedron |
Rhombic triacontahedron |
12 |
[3,8,8] |
Truncated cube |
Triakis octahedron |
13 |
[3,3,3,3,5] |
Snub dodecahedron |
Pentagonal hexecontahedron |
14 |
[3,4,5,4] |
Rhombicosidodecahedron |
Deltoidal hexecontahedron |
15 |
[4,6,8] |
Truncated cuboctahedron |
Disdyakis dodecahedron |
16 |
[5,6,6] |
Truncated icosahedron |
Pentakis dodecahedron |
17 |
[3,10,10] |
Truncated dodecahedron |
Triakis icosahedron |
18 |
[4,6,10] |
Truncated icosidodecahedron |
Disdyakis triacontahedron |
Wolfram Alpha
|
|
polyhedron |
dual polyhedron |
01 |
[3,3,3] |
tetrahedron |
tetrahedron |
02 |
[3,3,3,3] |
octahedron |
cube |
03 |
[4,4,4] |
cube |
octahedron |
04 |
[3,3,3,3,3] |
icosahedron |
dodecahedron |
05 |
[3,4,3,4] |
cuboctahedron |
rhombic dodecahedron |
06 |
[3,6,6] |
truncated tetrahedron |
triakis tetrahedron |
07 |
[3,3,3,3,4] |
snub cube |
pentagonal icositetrahedron |
08 |
[3,4,4,4] |
rhombicuboctahedron |
deltoidal icositetrahedron |
09 |
[5,5,5] |
dodecahedron |
icosahedron |
10 |
[4,6,6] |
truncated octahedron |
tetrakis hexahedron |
11 |
[3,5,3,5] |
icosidodecahedron |
rhombic triacontahedron |
12 |
[3,8,8] |
truncated cube |
small triakis octahedron |
13 |
[3,3,3,3,5] |
snub dodecahedron |
pentagonal hexecontahedron |
14 |
[3,4,5,4] |
rhombicosidodecahedron |
deltoidal hexecontahedron |
15 |
[4,6,8] |
truncated cuboctahedron |
disdyakis dodecahedron |
16 |
[5,6,6] |
truncated icosahedron |
pentakis dodecahedron |
17 |
[3,10,10] |
truncated dodecahedron |
triakis icosahedron |
18 |
[4,6,10] |
truncated icosidodecahedron |
disdyakis triacontahedron |
MathWorld
|
|
polyhedron |
dual polyhedron |
01 |
[3,3,3] |
Regular Tetrahedron |
Regular Tetrahedron |
02 |
[3,3,3,3] |
Octahedron |
Cube |
03 |
[4,4,4] |
Cube |
Octahedron |
04 |
[3,3,3,3,3] |
Icosahedron |
Dodecahedron |
05 |
[3,4,3,4] |
Cuboctahedron |
Rhombic Dodecahedron |
06 |
[3,6,6] |
Truncated Tetrahedron |
Triakis Tetrahedron |
07 |
[3,3,3,3,4] |
Snub Cube |
Pentagonal Icositetrahedron |
08 |
[3,4,4,4] |
Small Rhombicuboctahedron |
Deltoidal Icositetrahedron |
09 |
[5,5,5] |
Dodecahedron |
Icosahedron |
10 |
[4,6,6] |
Truncated Octahedron |
Tetrakis Hexahedron |
11 |
[3,5,3,5] |
Icosidodecahedron |
Rhombic Triacontahedron |
12 |
[3,8,8] |
Truncated Cube |
Small Triakis Octahedron |
13 |
[3,3,3,3,5] |
Snub Dodecahedron |
Pentagonal Hexecontahedron |
14 | [3,4,5,4] | Small Rhombicosidodecahedron | Deltoidal Hexecontahedron | |
15 |
[4,6,8] |
Great Rhombicuboctahedron |
Disdyakis Dodecahedron |
16 |
[5,6,6] |
Truncated Icosahedron |
Pentakis Dodecahedron |
17 |
[3,10,10] |
Truncated Dodecahedron |
Tiakis Icosahedron |
18 |
[4,6,10] |
Great Rhombicosidodecahedron |
Disdyakis Triacontahedron |
2015年6月12日
« Excel で諸量計算2
sashimono[3,5,3,5]再掲 »