03[4,4,4]

正多面体 Platonic solid 6

02[3,3,3,3] 03[4,4,4] Compounds 多面体 製作道具

[ 3,3,3,3 ] 正八面体 と [ 4,4,4 ] 正六面体とでできた
複合多面体製作への作業説明です。
少しずつ 思いつくままに 載せてゆきます。

画像右上 の右はしが 正六面体の上部の 四角形を作る稜部品に
稜の中心から この多面体の中芯とを通る直線を軸として
90°回転させた位置に部材を四枚分追加しています。

四角形の上部の一点で接しています。

その横のは 正八面体の上部の一つの面に 同じように三枚の部材を追加しています。

直角にクロスした部材の状態は 画像下方の 十二個の十字状の部材と
寸法 寸法比も同じものです。

PIC_2380

このブログでお伝えしている多面体は
フラトン多面体と アルキメデス多面体 を主な対象にしています。

そして 複合多面体の 複合する二つの多面体の稜は
直角に交差するものに限定しています。

このことから 多面体と複合する もう一つの多面体は 双対多面体になります。

正多面体の双対四面体は 正多面体です。
正多面体以外の アルキメデス多面体のグループは 形状が正多面体とことなります。
面が一種類になり 辺の寸法が同一ではない 多角形になります。

正四面体の 双対多面体は 同じく 正四面体
正六面体の 双対多面体は        正八面体
正八面体の 双対多面体は        正六面体
正12面体の 双対多面体は        正20面体
正20面体の 双対多面体は        正12面体
あとの画像説明は今回 判じ絵にしておきます。

leonardo da vinci geometric drawings の検索画面を紹介します。
レオナルドスタイルの 画像が含まれています。


正多面体 Platonic solid 5

03[4,4,4] Compounds 多面体 製作道具

[ 3,3,3,3 ] 正八面体 と [ 4,4,4 ] 正六面体とでできた複合多面体製作への
前段階の 作業の説明が続いています。

今回は [ 4,4,4 ] 正六面体の
稜部品の接合部分の加工に必要な治具について説明します。

すでに伝えている 四角棒で構成された多面体つくりの治具とは
異なる形状の治具です。 下画像の説明をします。

A4用紙下に 25 × 25 × 110 の角棒 があります。
垂直面を保持するための治具で 数本あると便利です。
6 × 30 × 70 の板材を A4用紙の下の辺に平行にさせ
2 × 10 × 70 の板棒を 用紙の対角線と平行に置いて
その上のような治具をつくります。

この治具で 部材を 54.74°の角度カットや その角度に成形させます。
上の 斜めカットの板材もその角度で 6 × 30× 70 の板を分割したものです。

その横の 二つの台形状のものは 5枚束ねた2 × 10 の板棒を
[ 4,4,4 ] 正六面体の稜部品として加工したものです。


PIC_2368


小寸にカットした 板材は多くの作業で必要となります。
その都度カットするのは 煩雑であったり 寸法決定も悩んでしまったりで
6 × 30 の板材を 70mm の寸法にカットしてあるものを複数個 常備しています。
2 × 10 × 70 の板棒も 同様です。

A4用紙の右の正六面体製作用治具の説明をします。

6 × 30 の板材に 斜めカットの板材と角棒とで
台形状部品を 54.74°の角度で貼っています。
その板材に傾斜を付けなければいけません。角度は 30°です。

A4用紙右上横の 治具で 2 × 10 × 70 の板棒を 30°で二分割しています。
それを 板材の裏の中心に貼っています。

続きの説明は 後日にします。

A4用紙からの角度の求め方

02[3,3,3,3] 03[4,4,4] Compounds 多面体 製作道具

このブログでは 正確な角度を得るための方法を
主に三角定規やグラフ用紙を用いて説明してきました。

簡易な方法として A4用紙を用いることもありました。(ダイヤモンド結晶等)

今回は A4用紙 を主要なツールとして
角度を求める方法をお伝えします。

A4用紙は 210 : 297 の寸法比に なっいて
1: √2 の寸法比 の近似値で規格されています。

1: √2 は 1 対 1.414213562
210 : 297 は 1 対 1.414285714 でかなりの近似です。

カメラに撮るのに容易なように 75 : 106 のカードを
用いて下画像を作っています。 1 対 1.413333333 です。

PIC_2307

画像右の 4枚のカードで カードの四隅が 全て90度であることの
チェックを行っています。

縦方向に置いた2枚のカードの右側カードと
その2枚 を挟む 上下2枚のカードを固定し
縦方向に置いた 左側のカードを 自由にして
上下 左右 表裏 に向きを変えて隙間がないか確認します。

A4用紙はどれも ピッタリと言えるほど 一致すると思います。
ただ 別のパッケージの用紙とか メーカーが違う場合は
微妙な結果になる場合があるかもしれません。

次は カードが 1 対 ルート2 の寸法比であるかのチェックです。

カードを 縦方向 に二分割したものと横方向に二分割したものを用意します。
 
それらを使って 左下のカードで 45度 45度 90度 の定規を作りました。
この斜めカット部分は A4用紙の 長方向部分の寸法と一致するはずです。

A4用紙の規格と合致していると確認できた用紙を
1/2の長方向の寸法と 短辺とで 定規を作ります。

A4用紙を 対角線方向に二分するのと同じ角度関係になります。
1 対 ルート2は ( √2 / 2 ) 対 1 と等しいからです。
35.264度 54.736度( 90 – 35.264 ) 90度 の定規です。

40cm の定規では 対角線カットは出来ますが 30cm では無理です。
多くの人は 40cm の定規は持っていないと思ったからです。

35.264度 はダイヤモンド結晶や サイコロ形の正六面体と
それと関連した多面体に 現れてくる数値です。

次の加工は 三つの辺が同一寸の 60度 60度 60度 の定規です。

これらの定規で 2 × 10 の板棒でつくる
[ 3,3,3,3 ] 正八面体 と [ 4,4,4 ] 正六面体とでの 複合多面体ができます。

次回も これの続きを書こうと思っています。

正多面体 Platonic solid 3

03[4,4,4] 多面体

まず [ 4,4,4 ] 正六面体についてお伝えします。

下画像の上 三つが 稜寸 50mm の [ 4,4,4 ] です。
左が 2 × 10 の板棒製で 10mm 巾の面を 中芯方向に向けています。
中のが 厚み 2mm のアクリル板でできていて
右は 10 × 10 のバルサ材で 作っています。

PIC_1692

[ 4,4,4 ] とは
面のかどと 面のかどが接する 一つの頂が
正四角形, 正四角形, 正四角形 となっていることを表示しています。

今回製作の部材は
2 × 10 の板棒を 5枚束ね セロテープを螺旋状に巻きつけて作ります。
下側の画像は 目的の角度に切断し 切断面の整形をしようとしているところです。

台形の板が 5枚 セロテープに巻かれた状態で 50mm の寸法になっています。

加工部材の断面が正方形になるので 板材の面の方向を間違って加工すると
とんでもない形状の部材ができてしまいます。( 何度も経験しています)
部材が 10mm 巾でなく 8mm でも 重ねが 5枚でなく 4枚でもいいのですが。
単なる私の好みです。

切断角度は
[ 4,4,4 ] の 仰角は 35.26° ですから 54.74° ( 90 – 35.26 ) になります。

直角三角形の 直角を挟む一つの辺を 169 もう一つの辺を 239 にすると
90° と 54.74° と 35.26° の角度からなる 直角三角形に
極めて近い角度が得られます。
画像下の部材を その方法で角度の決定をし 作っています。

接着は 木工用ボンドで行っています。
合成ゴム系ボンドでは 作業は簡単ですが 接着面の可塑性がなかなか消えず
グラグラして 気に入りません。

今回の 私の方法は
八つの部材で 正四角形を二つ作り 完全に接着部が乾燥してから
二つの四角形を あとの四つの部材で結合する というものでした。

接合部分には 正三角柱の空洞ができますが
削り屑とボンドを詰めものにしたり
先端の 2mm 巾面に少し丸みを持たせる加工を 正確な測定なしで施しても
まずまずの出来になります。

もう少し丁寧な方法は 複合多面体の説明と合わせて
お伝えしようと思っています。

正多面体 Platonic solid 2

01[3,3,3] 02[3,3,3,3] 03[4,4,4] 04[3,3,3,3,3] 09[5,5,5] Compounds 多面体 諸量

2×10 の板棒で作った 正多面体です。
画像手前の多面体は これからお伝えしようとしている 立体です。
左から 01[ 3,3,3 ] , 02[ 3,3,3,3 ] , 03[ 4,4,4 ] です。
後方左は 09[5,5,5] そして 04[3,3,3,3,3]。

PIC_1670

諸量を表示しておきます (稜寸は 1 として)。

     面積     体積     基本数   頂芯寸   稜芯寸   面芯寸   仰角   片接合角   二面角
01  1.73205  .117851  .577350  .612372  .353553  .204124  54.7356  60.0000  70.5288
02  3.46410  .471405  .707107  .707107  .500000  .408248  45.0000  45.0000  109.471
03  6.00000  1.00000  .816497  .866025  .707107  .500000  35.2644  60.0000  90.0000
04  8.66025  2.18169  .850651  .951057  .809017  .755761  31.7175  36.0000  138.190
09  20.6457  7.66312  .934172  1.40126  1.30902  1.11352  20.9052  60.0000  116.565


作り方については 現在 資料作成中です。

画像下側左右は複合多面体です。
PIC_1687

多面体諸量 個別表示 02[3,3,3,3] 03[4,4,4] Platonic solid

02[3,3,3,3] 03[4,4,4] Compounds 多面体

02[3,3,3,3] Octahedron 正八面体と
03[4,4,4] Hexahedron 正六面体 と
その複合多面体 compounds の諸量をお伝えします。

02 [3,3,3,3] Octahedron 正8面体
02 1.0000000000000000000 [3,3,3,3]稜寸
02 .70710678118654752440 [3,3,3,3]基本数
02 45.000000000000000000 [3,3,3,3]仰角( 180/180 )
02 .70710678118654752440 [3,3,3,3]頂芯寸( 169/239 )
02 .50000000000000000000 [3,3,3,3]稜芯寸( 125/250 )
02 45.000000000000000000 [3,3,3,3]片面接合角( 180/180 )
02 .40824829046386301637 [3,3,3,3]面芯寸( 089/218 )
02 3.4641016151377545871 [3,3,3,3]面積
02 .47140452079103168293 [3,3,3,3]体積
02 54.735610317245345685 [3,3,3,3]片面角( 239/169 )
02 109.47122063449069137 [3,3,3,3]二面角( 198/070 )
02 [3,3,3,3] 稜部品 必要個数 12

03 [4,4,4] Hexahedron 正6面体
03 1.0000000000000000000 [4,4,4]稜寸
03 .81649658092772603273 [4,4,4]基本数
03 35.264389682754654315 [4,4,4]仰角( 169/239 )
03 .86602540378443864676 [4,4,4]頂芯寸( 168/194 )
03 .70710678118654752440 [4,4,4]稜芯寸( 169/239 )
03 60.000000000000000000 [4,4,4]片接合角( 194/112 )
03 .50000000000000000000 [4,4,4]面芯寸( 125/250 )
03 6.0000000000000000000 [4,4,4]面積
03 1.0000000000000000000 [4,4,4]体積
03 45.000000000000000000 [4,4,4]片面角( 180/180 )
03 90.000000000000000000 [4,4,4]ニ面角
03 [4,4,4] 稜部品 必要個数 12

03 [4,4,4] Hexahedron 正6面体制作に用いる
cradleを作るのに必要な諸量は 45度の角度のみですみます。

[3,3,3,3]+[4,4,4] の複合多面体 制作に必要な諸量
稜芯寸を同一にするため 稜寸は異なります。

1.0000000000000000000 [3,3,3,3] の稜寸の半分/稜芯寸( 180/180 )
.70710678118654752440 [4,4,4] の稜寸の半分/稜芯寸( 169/239 )
[3,3,3,3] 稜部品 必要個数 24
[4,4,4]  稜部品 必要個数 24

正八面体 [3,3,3,3] Octahedron

02[3,3,3,3] 03[4,4,4] Compounds 多面体 製作道具



今日は正八面体( Octahedron ) についてお伝えします
左にあるのがその完成品です。

二つの治具で加工ができます。
今回も 10×10のバルサ材を使用しています ( 寸法は 85mm)。
右端の治具で ( 角棒の直角の面をそれぞれ45度傾ける溝があり 傾斜はなし)
角棒を両端とも45度斜めにカットします。
カットされた面を見ると菱形になっています (両端のカット面は 面対象)。
そして 真ん中のクレィドル cradle で
45度斜めにカットした部品の面を垂直にし(角棒の傾斜は45度)
左右45度ずつ 90度の接合面をつくります。
下の部品のように 右の状態から 左の状態に加工し 12個つくります。
それを接着すれば あっけなく完成です。

部品数も少なく 作業も容易に見えますが 加工角度が鋭角なため
作業性を高めるために ドレサー dresser だけでなく
カッターやのこぎりで ラフ整形をします。

dresser だけの加工では
かなりの 細かい木屑が発生し まめなクリーニングが必要です。
これは レオナルドスタイルの製作のことや この用具だけのことではなく
木材加工全般にもいえることで いつも考慮すべきことです。



正八面体と正六面体の複合多面体 compounds について説明します。

下の図右がその完成品です。
以前 星型八面体の製作をお伝えしたのと同じ方法で 二つの多面体を複合します。
正八面体に対応する部分は 正八面体と同じ寸法の稜寸にしています。

しかし 正六面体は正八面体と形状が異なり
正六面体部分の稜寸を 正八面体と同寸にすると うまく稜が交差しません。
そこで 稜から中芯までの距離をそれぞれ 同じくして複合します。

正八面体の稜寸を 1としたとき 稜芯寸は 0.5 。
正六面体の稜寸を 1としたとき 稜芯寸は 0.707 。
つまり 今回正八面体の稜寸を 85としましたから 高さ85mm で
正六面体の稜寸は 60.1 になります ( 1対 0.707 )。
この比例関係を グラフ用紙に表示すると
底辺 239 (正八面体の稜寸)で 対辺 169 (正六面体の稜寸) の斜線関係となります。



次回は 正十二面体や正二十面体 そしてそれらの複合多面体について
お伝えしようかと 思っています。

正六面体 [4,4,4] Hexahedron

03[4,4,4] 16[5,6,6] 多面体 製作道具



レオナルドスタイルでの正六面体(Hexahedron) のつくり方を お伝えします。
画面の中にある クレィドルだけで加工ができます。
角材を 45度斜めに加工できる添え板にあわせ切断 整形するものです。
加工した角材の45度斜めの面を上にして 横側を同じく 45度斜めに整形します。
両端をこのように加工し 12個そろえれば部品は完成です。
この正六面体が きれいに正確に作れるようになると ちょっとした指物師気分です。

正六面体の正方形の中に 斜めに棒がついているのがありますが
その六面体の各面に 棒が斜めにあり 正四面体を形成しています。
さらに その斜めの棒に直角に棒を組み合わせると 前回お伝えした星型八面体になります。
そして 斜めの棒の稜にそって 正六面体を二分すると
この切断面は ダイヤモンド結晶模型製作図面として使った A4 の用紙と相似です (1:√2)。



次回は
サッカーボールでおなじみの 多面体の製作方法を お伝えしようかと思っています。

画面左には 以前作ったすす竹の多面体を載せたかったのですが
事故でばらばらになっていて修復を待っています。

右側は多面体ではなく
炭素結晶のフラーレン fullerene の模型として 作ったものです。