sashimono[3,3,3,3,5] 双対多面体 Pentagonal Hexecontahedron 3
[3,3,3,3,5] 双対多面体 Pentagonal Hexecontahedron 製作に必要なもの についてお伝えします。
左のグラフ用紙の上方向にある 三角形の部品は 元の多面体 (変形12面体 Snub Dodecahedron) の 5角形の上にくる稜の仰角をつくる傾斜部品です。その角度は 底辺 213 対辺 074 で表される 斜線をプロットして得られます。
その線に沿って置いてある四角形の板が 90度から仰角を引いた角度 (余角)で稜部品をカットするものです。
10×10 の角材の断面の対角線方向にカットした形状のものを二本貼っています。
左下方向にある 三角形の部品は 元の多面体 (変形12面体 Snub Dodecahedron) の 3角形の上にくる稜の仰角をつくる傾斜部品です。
底辺 223 対辺 031 で表される 斜線をプロットして得られます。
四角形の板はその余角で稜部品をカットするものです。
右のグラフ用紙は [3,3,3,3,5] 双対多面体の稜寸を求めるものです。
二本の勾配を比較して 90度に近い方が 3角形と3角形とをまたぐ稜寸を決めるものです。
双対多面体の面から双対多面体の中芯点までの距離 (面芯寸)を 1としたとき
稜の寸法は 0.2858 になり 対辺 070 底辺 245 でグラフ用紙にその比が得られます。
二つ目の勾配の線が5角形と3角形とをまたぐ稜寸 / 面芯寸 ( 125/250 ) です。
グラフ用紙に載っている二つの部品は 面芯寸が 100mmのときの 稜の部品の寸法になっています。
2012年10月18日