Excel で 外接球半径
前回
一つの頂でてきる 多角錐から 諸量計算が簡単にできる多面体は多くあります。
と言いました。
以下に Excel での計算を 載せておきます。
[3,3,3,3,4] [3,3,3,3,5] [4,6,8] [4,6,10] は 保留します。
[3,4,5,4] は 式が複雑になってしまって 簡単ではありませんでした。
それらは パズル気分で 処理する Excel や
一般解を求める BASIC で処理したほうが得策のようです。
色付けした全範囲を指定し 1 行目 A 列に copy and paste
角数 | 側角度(R) | かど開き寸/2 | かど開き寸 | |
3 | =PI()/B2 | =COS(C2) | =D2*2 | |
4 | =PI()/B3 | =COS(C3) | =D3*2 | |
5 | =PI()/B4 | =COS(C4) | =D4*2 | |
6 | =PI()/B5 | =COS(C5) | =D5*2 | |
8 | =PI()/B6 | =COS(C6) | =D6*2 | |
10 | =PI()/B7 | =COS(C7) | =D7*2 | |
かど・中心寸 | 頂・底心寸 | 外接球半径 | ||
1 | [3,3,3] | =(SQRT(3)/2)/3*2 | =SQRT(1-C10^2) | =0.5/D10 |
2 | [3,3,3,3] | =1/SQRT(2) | =SQRT(1-C11^2) | =0.5/D11 |
3 | [4,4,4] | =SQRT(2)*(SQRT(3)/2)/3*2 | =SQRT(1-C12^2) | =0.5/D12 |
4 | [3,3,3,3,3] | =0.5/SIN(PI()/5) | =SQRT(1-C13^2) | =0.5/D13 |
5 | [3,4,3,4] | =SQRT(1+E3^2)/2 | =SQRT(1-C14^2) | =0.5/D14 |
6 | [3,6,6] | =E5/SQRT(E5^2-D2^2)*D5 | =SQRT(1-C15^2) | =0.5/D15 |
7 | [3,3,3,3,4] | |||
8 | [3,4,4,4] | =(0.5*E3)/COS(ACOS(((E3-1)/2)/E3)/2) | =SQRT(1-C17^2) | =0.5/D17 |
9 | [5,5,5] | =E4*SQRT(3)/2/3*2 | =SQRT(1-C18^2) | =0.5/D18 |
10 | [4,6,6] | =E5/SQRT(E5^2-D3^2)*D5 | =SQRT(1-C19^2) | =0.5/D19 |
11 | [3,5,3,5] | =SQRT(1+E4^2)/2 | =SQRT(1-C20^2) | =0.5/D20 |
12 | [3,8,8] | =E6/SQRT(E6^2-D2^2)*D6 | =SQRT(1-C21^2) | =0.5/D21 |
13 | [3,3,3,3,5] | |||
14 | [3,4,5,4] | |||
15 | [4,6,8] | |||
16 | [5,6,6] | =E5/SQRT(E5^2-D4^2)*D5 | =SQRT(1-C25^2) | =0.5/D25 |
17 | [3,10,10] | =E7/SQRT(E7^2-D2^2)*D7 | =SQRT(1-C26^2) | =0.5/D26 |
18 | [4,6,10] |
角数 | 側角度(R) | かど開き寸/2 | かど開き寸 | |
3 | 1.0471975511966 | 0.5 | 1 | |
4 | 0.785398163397448 | 0.707106781186548 | 1.4142135623731 | |
5 | 0.628318530717959 | 0.809016994374947 | 1.61803398874989 | |
6 | 0.523598775598299 | 0.866025403784439 | 1.73205080756888 | |
8 | 0.392699081698724 | 0.923879532511287 | 1.84775906502257 | |
10 | 0.314159265358979 | 0.951056516295154 | 1.90211303259031 | |
かど・中心寸 | 頂・底心寸 | 外接球半径 | ||
1 | [3,3,3] | 0.577350269189626 | 0.816496580927726 | 0.612372435695794 |
2 | [3,3,3,3] | 0.707106781186547 | 0.707106781186548 | 0.707106781186547 |
3 | [4,4,4] | 0.816496580927726 | 0.577350269189626 | 0.866025403784439 |
4 | [3,3,3,3,3] | 0.85065080835204 | 0.525731112119134 | 0.951056516295153 |
5 | [3,4,3,4] | 0.866025403784439 | 0.5 | 1 |
6 | [3,6,6] | 0.904534033733291 | 0.426401432711221 | 1.17260393995586 |
7 | [3,3,3,3,4] | |||
8 | [3,4,4,4] | 0.933948831094465 | 0.357406744336593 | 1.39896632596591 |
9 | [5,5,5] | 0.934172358962716 | 0.35682208977309 | 1.40125853844407 |
10 | [4,6,6] | 0.948683298050514 | 0.316227766016838 | 1.58113883008419 |
11 | [3,5,3,5] | 0.951056516295154 | 0.309016994374948 | 1.61803398874989 |
12 | [3,8,8] | 0.959682982260667 | 0.28108463771482 | 1.77882364566393 |
13 | [3,3,3,3,5] | |||
14 | [3,4,5,4] | |||
15 | [4,6,8] | |||
16 | [5,6,6] | 0.979432085486414 | 0.201774106167599 | 2.47801865906762 |
17 | [3,10,10] | 0.985721919281302 | 0.168381405886715 | 2.96944901586339 |
18 | [4,6,10] |
2015年6月17日