参考資料掲載Website 検索のための名称一覧

sphericity 多面体 諸量

シリーズで 諸量の計算について お伝えしてきました。

その 計算結果の値や内容の信頼性を高めるために WikipediaWolfram Alpha そして MathWorld を参考にすることがあります。

ただ 検索に必要な 名称がつかみにくく 手間取ることが多くあります。

以下に 検索できる 名称と webpage をリンクさせた 一覧表を載せておきます。

日本語版のWikipedia
多面体 双対多面体
01 [3,3,3] 正4面体 正4面体
02 [3,3,3,3] 正8面体 正6面体
03 [4,4,4] 正6面体 正8面体
04 [3,3,3,3,3] 正20面体 正12面体
05 [3,4,3,4] 立方8面体 菱形12面体
06 [3,6,6] 切頂4面体 3方4面体
07 [3,3,3,3,4] 変形立方体 5角24面体
08 [3,4,4,4] 斜方立方8面体 凧形24面体
09 [5,5,5] 正12面体 正20面体
10 [4,6,6] 切頂8面体 4方6面体
11 [3,5,3,5] 20・12面体 菱形30面体
12 [3,8,8] 切頂6面体 3方8面体
13 [3,3,3,3,5] 変形12面体 5角60面体
14 [3,4,5,4] 斜方20・12面体 凧形60面体
15 [4,6,8] 斜方切頂立方8面体 6方8面体
16 [5,6,6] 切頂20面体 5方12面体
17 [3,10,10] 切頂12面体 3方20面体
18 [4,6,10] 斜方切頂20・12面体  6方20面体
英語版のWikipedia
polyhedron dual polyhedron
01 [3,3,3] Tetrahedron Tetrahedron
02 [3,3,3,3] Octahedron Cube
03 [4,4,4] Cube Octahedron
04 [3,3,3,3,3] Icosahedron Dodecahedron
05 [3,4,3,4] Cuboctahedron Rhombic dodecahedron
06 [3,6,6] Truncated tetrahedron Triakis tetrahedron
07 [3,3,3,3,4] Snub cube Pentagonal icositetrahedron
08 [3,4,4,4] Rhombicuboctahedron Deltoidal icositetrahedron
09 [5,5,5] Dodecahedron Icosahedron
10 [4,6,6] Truncated octahedron Tetrakis hexahedron
11 [3,5,3,5] Icosidodecahedron Rhombic triacontahedron
12 [3,8,8] Truncated cube Triakis octahedron
13 [3,3,3,3,5] Snub dodecahedron Pentagonal hexecontahedron
14 [3,4,5,4] Rhombicosidodecahedron Deltoidal hexecontahedron
15 [4,6,8] Truncated cuboctahedron Disdyakis dodecahedron
16 [5,6,6] Truncated icosahedron Pentakis dodecahedron
17 [3,10,10] Truncated dodecahedron Triakis icosahedron
18 [4,6,10] Truncated icosidodecahedron Disdyakis triacontahedron
Wolfram Alpha
polyhedron dual polyhedron
01 [3,3,3] tetrahedron tetrahedron
02 [3,3,3,3] octahedron cube
03 [4,4,4] cube octahedron
04 [3,3,3,3,3] icosahedron dodecahedron
05 [3,4,3,4] cuboctahedron rhombic dodecahedron
06 [3,6,6] truncated tetrahedron triakis tetrahedron
07 [3,3,3,3,4] snub cube pentagonal icositetrahedron
08 [3,4,4,4] rhombicuboctahedron deltoidal icositetrahedron
09 [5,5,5] dodecahedron icosahedron
10 [4,6,6] truncated octahedron tetrakis hexahedron
11 [3,5,3,5] icosidodecahedron rhombic triacontahedron
12 [3,8,8] truncated cube small triakis octahedron
13 [3,3,3,3,5] snub dodecahedron pentagonal hexecontahedron
14 [3,4,5,4] rhombicosidodecahedron deltoidal hexecontahedron
15 [4,6,8] truncated cuboctahedron disdyakis dodecahedron
16 [5,6,6] truncated icosahedron pentakis dodecahedron
17 [3,10,10] truncated dodecahedron triakis icosahedron
18 [4,6,10] truncated icosidodecahedron disdyakis triacontahedron
MathWorld
polyhedron dual polyhedron
01 [3,3,3] Regular Tetrahedron Regular Tetrahedron
02 [3,3,3,3] Octahedron Cube
03 [4,4,4] Cube Octahedron
04 [3,3,3,3,3] Icosahedron Dodecahedron
05 [3,4,3,4] Cuboctahedron Rhombic Dodecahedron
06 [3,6,6] Truncated Tetrahedron Triakis Tetrahedron
07 [3,3,3,3,4] Snub Cube Pentagonal Icositetrahedron
08 [3,4,4,4] Small Rhombicuboctahedron Deltoidal Icositetrahedron
09 [5,5,5] Dodecahedron Icosahedron
10 [4,6,6] Truncated Octahedron Tetrakis Hexahedron
11 [3,5,3,5] Icosidodecahedron Rhombic Triacontahedron
12 [3,8,8] Truncated Cube Small Triakis Octahedron
13 [3,3,3,3,5] Snub Dodecahedron Pentagonal Hexecontahedron
14[3,4,5,4] Small RhombicosidodecahedronDeltoidal Hexecontahedron
15 [4,6,8] Great Rhombicuboctahedron Disdyakis Dodecahedron
16 [5,6,6] Truncated Icosahedron Pentakis Dodecahedron
17 [3,10,10] Truncated Dodecahedron Tiakis Icosahedron
18 [4,6,10] Great Rhombicosidodecahedron Disdyakis Triacontahedron

« »